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1 Introduction

The uni�cation of seemingly di�erent particles into simpli�ed descriptions remains an important

goal in particle physics. Such uni�cation is often attained by symmetries. For instance, uni�ca-

tion of quarks and leptons is obtained by assuming non-Abelian gauge symmetries larger than

the standard model gauge symmetry [1]. It is also possible to unify �elds with di�erent spins

if we introduce symmetries relating them. Supersymmetry is an example of such symmetries,

although it seems diÆcult to use it to unify �elds in the standard model. Another example is

higher dimensional spacetime symmetry. As was shown by Kaluza and Klein, such a symmetry

can be used to unify �elds which have the same statistics but di�erent spins, such as the graviton

and the photon [2].

In this paper we construct realistic theories unifying the Higgs and gauge �elds using a

higher dimensional spacetime symmetry. The idea of unifying Higgs and gauge �elds in higher

dimensions is not new. Starting from pioneering work in the late 1970's [3], renewed interest

in higher dimensions has resulted in the re-examination of such a possibility [4, 5, 6]. It is,

however, not straightforward to construct a completely realistic theory because of the following

immediate diÆculties:

� It is not trivial to obtain the quartic coupling of the Higgs �eld, which is required to have

successful electroweak symmetry breaking and suÆciently large physical Higgs boson mass.

� It is not easy to obtain Yukawa couplings, since higher dimensional gauge invariance often

leads to unwanted massless �elds at low energies or vanishing Yukawa couplings.

� Even if we obtain Yukawa couplings, they must have a quite di�erent structure than that

of the gauge sector to reproduce the observed quark and lepton masses and mixings. In

particular, the Yukawa couplings must have di�erent values for di�erent generations and

also intergenerational mixings.

One way of avoiding these problems is to identify the Higgs �elds with scalar �elds which are

superpartners of the higher dimensional gauge �elds. In this case, we can construct realistic the-

ories unifying the Higgs and gauge �elds without encountering the above problems [6]. However,

the problems become more severe if we want to identify the Higgs �elds with extra dimensional

components of the gauge �elds. Although there are several proposals dealing with these problems

(for instance the quartic coupling can be obtained from six dimensional gauge kinetic energies [3]

and the Yukawa couplings from non-local operators involving Wilson lines [6]), a complete theory

with a realistic phenomenology seems still missing. In this paper we construct a class of realistic

theories in which (a part of) the Higgs �elds arise from extra dimensional components of higher

dimensional gauge �elds, without su�ering from the above three problems.
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We consider higher dimensional supersymmetric gauge theories, which reduce to the minimal

supersymmetric standard model (MSSM) below the compacti�cation scale. To obtain the two

Higgs doublets from extra dimensional components of the higher dimensional gauge �elds, the

gauge group in higher dimensions must be larger than the standard model gauge group. This

larger gauge group is then broken to the standard model one by compactifying the theory on

orbifolds. Such a compacti�cation projects out some of the unwanted �elds from low energy

theories [7] and leads to special points in the extra dimensions (which we call branes) where

the original gauge group is reduced to its subgroup, and on which we can introduce multiplets

and interactions respecting only the reduced gauge symmetry [8]. This structure allows us to

construct theories with the desired properties. Speci�cally, we avoid the above three problems

in the following way.

� The theory is reduced to the MSSM below the compacti�cation scale, so that the Higgs

quartic couplings arise from the D-term potential as in the usual MSSM.

� Although higher dimensional gauge invariance forbids brane-localized Yukawa couplings

between the Higgs �elds and quark/lepton �elds, we can obtain Yukawa couplings from the

higher dimensional gauge coupling if we introduce quarks and leptons in the bulk. The

potentially-present unwanted massless �elds can be made heavy by coupling them to �elds

located on branes.

� Although the Yukawa couplings arise from the higher dimensional gauge interaction, the

low energy Yukawa couplings are in general di�erent from mere gauge couplings due to the

presence of the wave-function pro�les for the matter �elds arising from their bulk masses.

Intergenerational mixing can arise from the couplings between the matter �elds in the bulk

and �elds located on branes.

We construct a minimal theory in 5D, in which the higher dimensional gauge group is SU(3)C �
SU(3)W . We also construct a uni�ed version of the theory: 5D SU(6) model. Although the

group theoretical structures of these theories are similar to those of Ref. [6], in our theories

(a part of) the Higgs �elds arise from extra dimensional components of the higher dimensional

gauge �eld, and not from scalar �elds that are superpartners of the gauge �eld. This allows us

to consider a �ve dimensional theory: the theory with the minimal number of extra dimensions.

Extensions to higher dimensional cases are straightforward.

We here note that our mechanism for reproducing realistic Yukawa couplings is quite general

and can also be applied to non-supersymmetric theories. This implies that, if we generate the

quartic coupling from some other source, for instance from gauge kinetic energies by considering

6D theories, we can construct non-supersymmetricmodels where the Higgs �elds arise from extra

dimensional components of the gauge �eld. The construction should employ a similar gauge
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symmetry structure, and the values for the low-energy gauge couplings must be reproduced

by brane-localized gauge couplings depending on the value for 1=R (see section 2). Such a

construction could be used to consider theories in which the quadratic divergence for the Higgs

doublet is cut o� by the size of the compact extra dimensions, if we choose 1=R � TeV [4].

The organization of the paper is the following. In the next section we present a minimal

theory with gauge group SU(3)C � SU(3)W . We discuss how the MSSM Yukawa structure is

obtained below the compacti�cation scale 1=R. In section 3 we construct a uni�ed theory based

on 5D SU(6). This theory yields the successful prediction of the MSSM for sin2 �w together with

1=R � 1016 GeV, provided that the volume of the extra dimension is large. Conclusions and

discussion are given in section 4.

2 Minimal Theory: 5D SU(3)C � SU(3)W Model

In this section we construct a minimal theory in which the MSSM Higgs doublets arise from

extra dimensional components of the gauge �elds. We consider a 5D supersymmetric SU(3)W

gauge theory compacti�ed on an S1=Z2 orbifold. This SU(3)W contains the standard model

electroweak gauge group: SU(3)W � SU(2)L � U(1)Y . The color SU(3)C interaction can be

introduced in a straightforward manner. In subsection 2.1 we illustrate our basic idea, using a

single generation model. In subsection 2.2 we generalize it to three generations and discuss how

the observed structure of quark and lepton mass matrices is obtained in our model.

2.1 Single generation model

We start by considering the gauge-Higgs sector of the model. The orbifold S1=Z2 is constructed

by identifying the coordinate of the �fth dimension, y 2 (�1;1), under two operations Z :

y! �y and Z 0 : y0 ! �y0 where y0 � y � �R. The resulting space is a line interval y 2 [0; �R].

Under these two operations, various �elds can have non-trivial boundary conditions. Using 4D

N = 1 super�eld language, in which the gauge degrees of freedom are contained in V (A�; �) and

�(� + iA5; �
0), the boundary conditions for the 5D SU(3)W gauge multiplet are given by

�
V
�

�
(x�;�y) =

�
PV P�1

�P�P�1

�
(x�; y);

�
V
�

�
(x�;�y0) =

�
P 0V P 0�1

�P 0�P 0�1

�
(x�; y0); (1)

where P and P 0 are 3 � 3 matrices acting on gauge space. We now choose P and P 0 such that

SU(3)W is broken down to SU(2) � U(1) and the two Higgs doublets are obtained from the

5D gauge multiplet. Speci�cally, we take P = P 0 = diag(1; 1;�1), in which case boundary
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conditions are given by

V :

0
B@

(+;+) (+;+) (�;�)
(+;+) (+;+) (�;�)
(�;�) (�;�) (+;+)

1
CA ; � :

0
B@

(�;�) (�;�) (+;+)
(�;�) (�;�) (+;+)
(+;+) (+;+) (�;�)

1
CA ; (2)

where the �rst and second signs represent parities under the two re
ections Z and Z 0, respec-

tively. Since only (+;+) components have zero modes, we �nd that the gauge group is broken to

SU(2)�U(1) at low energies. We identify this SU(2)�U(1) as the standard model electroweak

gauge group, SU(2)L�U(1)Y . We also �nd that there are two SU(2)L doublet zero-mode �elds

arising from �, which we identify as the two MSSM Higgs doublets, Hu and Hd. Therefore, at

this stage, the low-energy matter content below the compacti�cation scale, 1=R, is the 4D N = 1

SU(2)L � U(1)Y gauge multiplet and the two MSSM Higgs doublets. Since the low-energy the-

ory below 1=R is 4D N = 1 supersymmetric, the Higgs quartic couplings arise from the D-term

potential as in the usual MSSM.

We next consider the 5D gauge symmetry structure of the theory. Although the gauge

symmetry is broken to SU(2)L � U(1)Y in the low-energy 4D theory, the original 5D theory

has a larger gauge symmetry. We �nd that this gauge symmetry is SU(3)W but with the gauge

transformation parameters obeying the same boundary conditions as the corresponding 4D gauge

�elds. Speci�cally, the SU(2)L � U(1)Y gauge parameters have (Z;Z 0) = (+;+) parities, while

SU(3)W =(SU(2)L �U(1)Y ) ones have (Z;Z 0) = (�;�). This implies that gauge transformation

parameters for SU(3)W =(SU(2)L � U(1)Y ) always vanish at y = 0 and �R, so that the gauge

symmetry on these �xed points (branes) is reduced to SU(2)L � U(1)Y ; in particular, we can

introduce �elds and interactions that respect only SU(2)L � U(1)Y on these branes [8]. This

position-dependent gauge symmetry structure is very important for constructing our theory.

What is the compacti�cation scale 1=R? If the 4D gauge couplings arose entirely from the

5D bulk gauge coupling, there would be a relation between the zero-mode gauge couplings of

SU(2)L and U(1)Y at the scale of 1=R. Denoting the SU(2)L coupling and the conventionally

normalized hypercharge coupling as g2 and gY , respectively, this relation is given by gY =
p
3g2.

Here, we have neglected the di�erence between the cuto� scale M� and the compacti�cation

scale 1=R, which could slightly a�ect the relation. Assuming the MSSM matter content below

1=R, this would require 1=R to be much larger than the Planck scale for low energy data to

be reproduced. However, the 4D gauge couplings can also receive contributions from brane-

localized gauge kinetic terms, such as Æ(y)�0F 2
�� and Æ(y � �R)��F 2

�� , which can have di�erent

coeÆcients for SU(2)L and U(1)Y . If the volume of the extra dimension is not large, these

terms are expected to give non-negligible contributions to the 4D gauge couplings. In this case,

we do not have any de�nite relation between g2 and gY at the scale of 1=R, and consequently

the value of 1=R is not constrained by the low-energy gauge couplings. Here we simply choose
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brane-localized terms such that low energy data for g2 and gY are reproduced, and treat 1=R as

a free parameter. (The situation is quite di�erent in the uni�ed model given in section 3.) From

now on, we normalize the generator of U(1)Y � SU(3)W to match the conventional de�nition of

hypercharge: TY = diag(1=6; 1=6;�1=3), (so that the Higgs doublets have hypercharges �1=2).
The color SU(3)C interaction can be added in a straightforward way. We introduce the 5D

SU(3)C gauge multiplet in the bulk: fVC ;�Cg. The Z and Z 0 parities are assigned as VC(+;+)

and �C(�;�), giving the 4D N = 1 SU(3)C gauge multiplet below 1=R. Obviously, the Higgs

doublets are singlet under SU(3)C as it should be. The gauge symmetry in the bulk is now

SU(3)C � SU(3)W and that on the two branes is SU(3)C � SU(2)L � U(1)Y .

Having understood the gauge-Higgs sector, we now consider matter �elds. We �rst note that

it is not trivial to write down Yukawa couplings as usual local operators. One might naively

think that we can introduce quark and lepton chiral supermultiplets on a brane and couple them

to the Higgs �elds through brane-localized Yukawa couplings. However, it turns out that this

does not work. The source of the diÆculty is the gauge transformation property of the Higgs

�elds. Using the 4D N = 1 super�eld language, the gauge transformation of the 5D SU(3)W

gauge multiplet is given by

eV ! e�eV e�
y

; (3)

� ! e�(��p2@y)e��; (4)

where � is a chiral super�eld containing a gauge transformation parameter � [9]. Since the

Higgs �elds are identi�ed with components of �, we �nd that they transform non-linearly under

the 5D gauge transformation. This prevents us to write a Yukawa coupling to the matter �elds

on the brane. (In component language, A5 ! A5 + @y� + � � � forbids the Yukawa coupling

L � Æ(y)q �qA5.) Therefore, we choose to introduce quarks and leptons in the bulk, and produce

Yukawa couplings from the 5D gauge interaction.

We begin with the down-type quark sector. We consider a hypermultiplet fD;Dcg trans-

forming as 3 under both SU(3)C and SU(3)W , where D and Dc represent 4D N = 1 chiral

super�elds. In our notation, a conjugated �eld has the opposite transformation property with

the non-conjugated �eld, and we specify the transformation property of a hypermultiplet by

that of the non-conjugated chiral super�eld; for instance, D and Dc transform as 3 and 3� under

SU(3)C , respectively. We choose the boundary conditions for this hypermultiplet as follows:

D = D(+;+)
Q (3;2)1=6 �D(�;�)

D (3;1)�1=3; (5)

Dc = Dc (�;�)
Q (3�;2)�1=6 �Dc (+;+)

D (3�;1)1=3; (6)

where the superscripts denote transformation properties under (Z;Z 0), and the numbers with

parentheses represent gauge quantum numbers under SU(3)C � SU(2)L � U(1)Y with hyper-
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charges normalized conventionally. Since only (Z;Z 0) = (+;+) components have zero modes,

we �nd that there are only two zero modes, which arise from DQ(3;2)1=6 and Dc
D(3

�;1)1=3.

What is the gauge interaction for this hypermultiplet? Using the 4D N = 1 super�eld

language, the 5D gauge interaction is written as [9]

S =
Z
d4x dy

�Z
d2� d2��

�
Dye�VD +DceVDcy

�
+
�Z

d2� Dc(@y � �)D + h:c:
��
: (7)

At low energies, the �rst two terms give the usual 4D N = 1 gauge interaction for the zero

modes of DQ and Dc
D. On the other hand, the third (superpotential) term gives the interaction

among the zero modes of DQ, Dc
D and �:

S =
Z
d4x

Z
d2� y0dDc

DHdDQ + h:c:; (8)

where y0d is the coupling constant and Hd represents the (1;2)�1=2 component of �. This has the

form of the Yukawa coupling for the down-type quark. Therefore, we are tempted to identify

the zero modes of DQ and Dc
D as the MSSM quark supermultiplets Q and D. Before making

this identi�cation, however, we have to consider the up-type quark sector, where we will learn

that the actual identi�cation must be somewhat more subtle.

For the up-type quarks, we introduce a hypermultiplet fU ;U cg transforming as 3� and 6

under SU(3)C and SU(3)W . The boundary conditions for this hypermultiplet are chosen as

U = U (+;+)
T (3�;3)1=3 � U (�;�)

Q (3�;2)�1=6 � U (+;+)
U (3�;1)�2=3; (9)

U c = U c (�;�)
T (3;3)�1=3 � U c (+;+)

Q (3;2)1=6 � U c (�;�)
U (3;1)2=3: (10)

Thus, we have zero modes for UT (3�;3)1=3, UU(3�;1)�2=3 and U c
Q(3;2)1=6. As in the case of

the fD;Dcg hypermultiplet, the 5D gauge interaction reproduces, at low energies, the Yukawa

couplings among these zero modes and the zero mode of �, of the form

S =
Z
d4x

Z
d2�

�
y0uU c

QHuUU + y00uU c
QHdUT

�
+ h:c:; (11)

where y0u and y00u are coupling constants and Hu represents the (1;2)1=2 component of �. The

�rst term appears the up-type Yukawa coupling. However, here we encounter a few problems.

First, after canonically normalizing the 4D �elds, we �nd that y0u and y
0
d have the same value as

the gauge coupling that would arise purely from the 5D bulk gauge coupling: y0u = y0d = g, where

g is expected to be similar in size with the SU(2)L and U(1)Y gauge couplings (y00u is also equal

to g). This is grossly incompatible with observation, especially for the �rst generation. Second,

the quark doublets, U c
Q and DQ, appearing in the up-type and down-type Yukawa couplings

are di�erent �elds, while the two must be an identical �eld in the MSSM. Third, we have an
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unwanted massless �eld which does not appear in the MSSM: the zero mode of UT (3�;3)1=3.
Below we will address these issues in turn.

The �rst problem, y0u = y0d = g, can be solved by introducing bulk masses for the hypermul-

tiplets:

S =
Z
d4x dy

�Z
d2� (MuU cU +MdDcD) + h:c:

�
; (12)

whereMu andMd are real. (In the covering space, these masses are odd under y !�y: they are
M for 0 < y < �R but �M for ��R < y < 0.) With these bulk masses, wave-functions for the

zero-mode �elds have exponential pro�les in the extra dimension. As an example, here we choose

Mu > 0 and Md < 0. In this case the wave-functions for the zero modes of U c
Q, UU , DQ, and

Dc
D have pro�les as expf�jMujyg, expfjMuj(y � �R)g, expf�jMdjyg, and expfjMdj(y � �R)g,

respectively. The zero modes for U c
Q and DQ are localized toward the y = 0 brane, while those

of UU and Dc
D toward the y = �R brane (the zero mode of UT is localized to the y = �R brane).

Since the 4D \Yukawa couplings", y0u and y0d, are proportional to the overlap of the zero-mode

wave-functions, they now di�er from the 4D \gauge coupling", g:

y0u =
�RjMujg

sinh(�RjMuj)
jMujR>�1�! 2�RjMuje��RjMujg; (13)

y0d =
�RjMdjg

sinh(�RjMdj)
jMdjR>�1�! 2�RjMdje��RjMdjg: (14)

Therefore, we can choose these couplings to be free parameters of the theory (the coupling y00d
is equal to y0d). An important point is that they are exponentially suppressed for large bulk

masses, and this fact will be used in the next subsection for generating the hierarchy of quark

and lepton masses.

We now consider the second and third problems. Regarding the third problem, the unwanted

UT �eld, we introduce a chiral super�eld �U �T (3;3)�1=3 on the y = �R brane, which has the

opposite transformation property with UT under SU(3)C�SU(2)L�U(1)Y . Remember that only

the SU(3)C �SU(2)L�U(1)Y gauge symmetry is active on the brane, and we can introduce an

arbitrary SU(3)C�SU(2)L�U(1)Y representation, which does not have to be in a representation

of SU(3)W .1 Then, by introducing a brane mass term Æ(y � �R)[�T �U �TUT ]�2, we can make the

unwanted �eld, UT , heavy (together with the new �eld, �U �T ). The mass of these �elds is naturally

expected to be 1=R or higher.

The second problem can be dealt with in a similar way. We introduce a chiral super�eld

1This implies that U (1)Y charges of brane matter do not necessarily have to be quantized in units of the bulk
non-Abelian gauge group. We do not address this issue of quantization of brane U (1) charges in this paper. One
possibility of obtaining the desired quantization is to consider higher dimensional theories with a larger gauge
group, as discussed in Ref. [10].
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�Q(3�;2)�1=6 on the y = 0 brane, together with the superpotential term

S =
Z
d4x dy Æ(y)

�Z
d2� �Q(�Q;1U c

Q + �Q;2DQ) + h:c:
�
: (15)

This makes one linear combination of U c
Q and DQ heavy, of mass 1=R or higher, together with

�Q. We de�ne this linear combination as QH � cos �Q U c
Q+sin �QDQ, where tan�Q = �Q;2=�Q;1.

Then, we �nd that the orthogonal combination, Q � � sin�Q U c
Q +cos �QDQ, remains massless

at low energies. We identify this �eld as the quark doublet of the MSSM. Therefore, we �nally

obtain the following �eld content below 1=R: the 4D N = 1 SU(3)C � SU(2)L � U(1)Y vector

supermultiplets, two Higgs chiral super�elds, Hu(1;2)1=2 andHd(1;2)�1=2, and three quark chiral

super�elds, Q(3;2)1=6, U � UU (3�;1)�2=3 and D � Dc
D(3

�;1)1=3. They have usual 4D N = 1

gauge interactions as well as the Yukawa couplings

S =
Z
d4x

Z
d2� (yuQUHu + ydQDHd) + h:c:; (16)

where yu = �y0u sin�Q and yd = y0d cos �Q. This is exactly the quark sector of the MSSM. Thus

we �nd that our theory, in which the Higgs �elds arise as an extra dimensional component of

the 5D gauge �eld, reduces to the MSSM at energies below 1=R, as far as the quark sector is

concerned.

At this point we make one comment. Since the form of Eqs. (13, 14) implies y0u; y
0
d � g and

thus jyuj; jydj � g, one may worry that the top quark mass is not reproduced in our theory.

However, this is not necessarily the case. First, g is not trivially related to the observed gauge

coupling values; these relations can involve unknown contributions from brane-localized gauge

kinetic terms, so that g can be larger than the weak gauge couplings. Second, the expressions for

the Yukawa couplings given above apply at the scale of 1=R. In fact, in the uni�ed model given

in the next section, 1=R is around the conventional uni�ed mass scale, i.e. 1=R � 1016 GeV,

and g is the uni�ed gauge coupling, g � 0:7. In this case our theory requires yt <� 0:7 at 1=R,

but this is not in contradiction with the observed value of the top quark mass.

The lepton sector can be worked out similarly. We �rst consider charged leptons. We

introduce a hypermultiplet fE; Ecg transforming as 1 and 10 under SU(3)C and SU(3)W . The

boundary conditions are chosen as

E = E(+;+)Q (1;4)1=2� E(�;�)T (1;3)0 � E(+;+)L (1;2)�1=2 � E(�;�)E (1;1)�1; (17)

Ec = Ec (�;�)Q (1;4)�1=2 � Ec (+;+)T (1;3)0 � Ec (�;�)L (1;2)1=2� Ec (+;+)E (1;1)1: (18)

The zero-mode �elds arise from EQ(1;4)1=2, EL(1;2)�1=2, EcT (1;3)0 and EcE(1;1)1. Introducing a
bulk hypermultiplet mass Me, which we assume to be positive for simplicity, the zero modes of
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EQ and EL (EcT and EcE) are localized toward the y = �R (y = 0) brane. The 5D gauge interaction

yields the Yukawa coupling of the form

S =
Z
d4x

Z
d2� (y0eELHdEcE + � � �) + h:c:; (19)

where y0e is given as Eq. (13) with y0u ! y0e and Mu !Me. The unwanted �elds, EQ and EcT , can
be made heavy by introducing brane-localized chiral supermultiplets, �E �Q on the y = �R brane

and �Ec�T on the y = 0 brane, together with the brane superpotential terms Æ(y��R)[EQ �E �Q]�2 and

Æ(y)[EcT �Ec�T ]�2. Then, if we de�ne L � EL and E � EcE, we �nd that the term in Eq. (19) gives

the charged-lepton Yukawa coupling in the MSSM (this identi�cation must be slightly modi�ed

when we consider neutrino masses, see below).

Small neutrino masses are introduced as follows. To employ the conventional seesaw mecha-

nism [11], we introduce a hypermultiplet fN ;N cg transforming as 1 and 8 under SU(3)C and

SU(3)W , respectively. The boundary conditions are given by

N = N (+;+)
T (1;3)0 �N (�;�)

L (1;2)1=2 �N (�;�)
H (1;2)�1=2 �N (+;+)

N (1;1)0; (20)

N c = N c (�;�)
T (1;3)0 �N c (+;+)

L (1;2)�1=2 �N c (+;+)
H (1;2)1=2 �N c (�;�)

N (1;1)0: (21)

The zero modes then arise from NT (1;3)0, NN (1;1)0, N c
L(1;2)�1=2 and N c

H(1;2)1=2. The bulk

hypermultiplet mass Mn, which we take to be negative, is introduced as before, localizing the

zero modes of NT and NN (N c
L and N c

H) to the y = 0 (y = �R) brane. At low energies, the 5D

gauge interaction yields

S =
Z
d4x

Z
d2� (y0nNNHuN c

L + � � �) + h:c:; (22)

where y0n is given as Eq. (13) with y0u ! y0n and Mu !Mn.

Now we �nd that the situation is similar to the quark case. We consider hypermultiplets

fE; Ecg and fN ;N cg, with the boundary conditions given by Eqs. (17, 18, 20, 21). Among the

zero modes, EQ, EcT , NT and N c
H �elds are made heavy, of mass around 1=R, by introducing

appropriate brane �elds and superpotentials: Æ(y � �R)[EQ �E �Q]�2, Æ(y)[EcT �Ec�T ]�2 , Æ(y)[NT
�N �T ]�2

and Æ(y � �R)[N c
H
�N c
�H ]�2. We also introduce a brane chiral super�eld �L(1;2)1=2 on the y = �R

brane, together with the superpotential

S =
Z
d4x dy Æ(y � �R)

�Z
d2� �L(�L;1EL + �L;2N c

L) + h:c:
�
: (23)

This makes one linear combination of EL and N c
L, LH � cos�L EL + sin�LN c

L, heavy, where

tan �L = �L;2=�L;1. Thus, at energies below 1=R, we have three chiral super�elds: L(1;2)�1=2 �
� sin�L EL+cos �LN c

L, E � EcE(1;1)1 and N � NN (1;1)0. Introducing the brane superpotential

Æ(y)[(�N=2)N 2
N ]�2 , we �nd that these �elds have the following superpotential:

S =
Z
d4x

Z
d2�

�
yeLEHd + ynLNHu +

MR

2
N2
�
+ h:c:; (24)
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where ye = �y0e sin�L, yn = y0n cos�L and MR = 2�N jMnj=(1 � e�2�RjMnj). Since we expect

MR to be large, MR � Mn � 1=R, this superpotential gives small neutrino masses through the

seesaw mechanism, as well as the charged-lepton Yukawa coupling.

Finally, we comment on anomalies. Since the �eld content of our theory below 1=R is that

of the MSSM (with right-handed neutrino), there are no 4D gauge anomalies. There could still

be anomalies in 5D localized on the two branes, which are equal and opposite. However, we

can always cancel these anomalies by introducing a bulk Chern-Simons term, recovering the

consistency of the theory [12].

2.2 Three generation model

In this subsection, we generalize the above single generation model to a realistic three generation

model. The basic idea is the same. We consider the 5D SU(3)C�SU(3)W supersymmetric gauge

theory, with the boundary conditions for the gauge �elds given as in the previous subsection.

Below 1=R, this yields the 4D N = 1 SU(3)C � SU(2)L � U(1)Y vector super�elds, together

with the two Higgs chiral super�elds, Hu and Hd, arising from � of SU(3)W . The 5D gauge

symmetry structure is given as before: the bulk has SU(3)C � SU(3)W while the branes have

only SU(3)C � SU(2)L � U(1)Y .

We start with the quark sector. We consider three down-type hypermultiplets, fDi;Dc
ig

(i = 1; 2; 3), transforming as (3;3) under SU(3)C�SU(3)W , and three up-type hypermultiplets,

fUi;U c
i g (i = 1; 2; 3), transforming as (3�;6) under SU(3)C � SU(3)W . We introduce bulk

masses Mu;i and Md;i for each hypermultiplet, which we choose Mu;i > 0 and Md;i < 0. These

hypermultiplets obey the boundary conditions as in Eqs. (5, 6, 9, 10). Among the resulting zero

modes, those arising from UT;i are made heavy by coupling to three brane �elds �U �T ;i on the

y = �R brane: Æ(y��R)[�T;ij �U �T ;iUT;j]�2 with rank(�T;ij) = 3. Below we concentrate on the rest

of the zero modes, DQ;i, Dc
D;i, UU;i and U c

Q;i, and see how the observed structure of the quark

mass matrices is obtained in our model.

We �rst consider the superpotential Yukawa terms that arise directly from the 5D gauge

interaction. They are given by

S =
Z
d4x

Z
d2�

3X
i=1

�
y0u;iU c

Q;iUU;iHu + y0d;iDQ;iDc
D;iHd

�
+ h:c:; (25)

where y0u;i and y0d;i are given by Eqs. (13, 14) with (y0u;Mu) ! (y0u;i;Mu;i) and (y0d;Md) !
(y0d;i;Md;i), which we treat as free parameters of the theory. Since these interactions arise from a

part of the 5D gauge interaction, they are diagonal in 
avor space. The intergenerational mixing

then must come from the brane-localized mass terms required to make the unwanted zero-mode

�elds heavy.
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The brane superpotential making the unwanted zero-mode �elds heavy is now given as

S =
Z
d4x dy Æ(y)

2
4Z d2�

3X
i;j=1

�
�ijU c

Q;i + �ijDQ;i

�
�Qj + h:c:

3
5 ; (26)

where �Qi(3�;2)�1=6 are chiral super�elds localized on the y = 0 brane. This yields the superpo-

tential mass term between the zero-mode and the brane-localized �elds

WM =
�
U c
Q DQ

� M�

M�

!
�Q: (27)

Here, we have used a matrix notation: U c
Q and DQ ( �Q) represent 3-dimensional row (column)

vectors, and M� and M� are 3� 3 matrices. We can diagonalize this mass term by rotating the

�elds by 6 � 6 and 3 � 3 unitary matrices, UQ
6�6 and U

�Q
3�3,

�
U c
Q DQ

�
�
�
QH Q

�
UQ
6�6 �

�
QH Q

�0@ U
Q(1)
3�3 U

Q(2)
3�3

U
Q(3)
3�3 U

Q(4)
3�3

1
A ; �Q � U

�Q
3�3

�Q0; (28)

as

WM =
�
QH Q

�
UQ
6�6

 
M�

M�

!
U

�Q
3�3

�Q0 =
�
QH Q

� Mdiag

03�3

!
�Q0; (29)

where QH and Q ( �Q0) are 3-dimensional row (column) vectors and Mdiag is a diagonal 3 � 3

matrix. Therefore, assuming rank(Mdiag) = 3, we �nd that three linear combinations, QH's, of

U c
Q;i and DQ;i become heavy together with the brane �elds �Qi, and only the other three linear

combinations, Q's, remain massless below 1=R. We identify these modes as the quark-doublet

super�elds of the MSSM and work out the resulting structure for the Yukawa couplings.

The SU(2)L-singlet quark super�elds of the MSSM are identi�ed as Ui � UU;i and Di � Dc
D;i.

Then, we �nd from Eq. (25) that the low-energy 4D Yukawa couplings are given by

S =
Z
d4x

Z
d2�

�
QU

Q(3)
3�3 Y

0
u UHu +QU

Q(4)
3�3 Y

0
d DHd

�
+ h:c:; (30)

where we have used a matrix notation: U and D represent 3-dimensional column vectors, Y 0
u �

diag(y0u;1; y
0
u;2; y

0
u;3), and Y

0
d � diag(y0d;1; y

0
d;2; y

0
d;3). We thus �nd that the MSSM Yukawa matrices,

Yu and Yd, are given by

Yu = U
Q(3)
3�3 Y

0
u; (31)

Yd = U
Q(4)
3�3 Y

0
d; (32)

in our theory (these Yukawa matrices should be viewed as the running couplings at the scale

of 1=R). This structure is suÆciently general to accommodate the observed quark masses and

mixings. The quark masses are obtained by diagonalizing the Yukawa matrices as

V y
uL U

Q(3)
3�3 Y

0
uhHuiVuR = diag(mu;mc;mt); (33)

V y
dL U

Q(4)
3�3 Y

0
dhHdiVdR = diag(md;ms;mb); (34)
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where VuL, VuR, VdL, and VdR are unitary matrices. The CKM matrix is then given by

VCKM = V y
uLVdL: (35)

It is interesting to note that the elements in the matrices Y 0
u and Y

0
d have exponential sensitivity

to the bulk masses of matter hypermultiplets and could naturally be the source of hierarchies

for the quark masses. Note that the bulk hypermultiplet masses have also been used to generate

fermion mass hierarchies in di�erent contexts [13].

The lepton sector works quite similarly. We introduce three charged-lepton hypermultiplets,

fEi; Eci g, transforming as (1;10) under SU(3)C � SU(3)W , and three neutrino hypermultiplets,

fNi;N c
i g, transforming as (1;8) under SU(3)C � SU(3)W . The boundary conditions are given

by Eqs. (17, 18, 20, 21), and we introduce bulk massesMe;i and Mn;i. All the unwanted massless

�elds are made heavy by introducing appropriate brane �elds and brane superpotentials, leaving

only three sets of lepton-doublet chiral super�elds, Li, charged-lepton chiral super�elds, Ei, and

right-handed neutrino chiral super�elds, Ni, below 1=R. Introducing brane-localized Majorana

mass terms for Ni's, we obtain the superpotential in Eq. (24), but now ye, yn andMR are all 3�3

matrices. The Yukawa matrices, ye and yn, take similar forms to those of quarks, Eqs. (31, 32),

while the right-handed neutrino Majorana mass matrix,MR, has the most general structure.

3 Uni�ed Theory: 5D SU(6) Model

In this section we construct a uni�ed version of the previous theory. The basic idea is the

same. We consider a 5D supersymmetric gauge theory on S1=Z2, with non-trivial boundary

conditions breaking the uni�ed gauge symmetry. The low-energy theory below 1=R is a 4D

N = 1 supersymmetric gauge theory with gauge group SU(3)C � SU(2)L � U(1)Y (times an

extra U(1)). The MSSM Higgs doublets arise from an extra dimensional component of the gauge

�eld, i.e. the � �eld. Matter �elds are introduced in the bulk, while the Yukawa couplings arise

from the 5D gauge interaction. The various Yukawa couplings are controlled by bulk masses for

the matter hypermultiplets, and the unwanted zero modes are all made heavy by introducing

appropriate brane super�elds and superpotentials. Unlike the previous SU(3)C�SU(3)W theory,

however, this uni�ed theory gives the correct normalization for hypercharges: the SU(5) relation

for the threeMSSM gauge couplings. Therefore, assuming a large volume for the extra dimension,

we recover the successful prediction of the MSSM for sin2 �w. The compacti�cation scale is then

given by the conventional uni�cation scale, 1=R � 1016 GeV, at the leading order.

We �rst describe the gauge-Higgs sector of the theory. We consider a 5D supersymmetric

SU(6) gauge theory on S1=Z2. The boundary conditions for the 5D SU(6) gauge multiplet is

given as in Eq. (1) but with P and P 0 being 6�6 matrices. To break SU(6) down to the standard
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model gauge group (with an extra U(1)X gauge group), we choose P = diag(1; 1; 1; 1; 1� 1) and

P 0 = diag(1; 1;�1;�1;�1;�1). Speci�cally, the boundary conditions for the 5D gauge multiplet

are written as

V :

0
BBBBBBBB@

(+;+) (+;+) (+;�) (+;�) (+;�) (�;�)
(+;+) (+;+) (+;�) (+;�) (+;�) (�;�)
(+;�) (+;�) (+;+) (+;+) (+;+) (�;+)
(+;�) (+;�) (+;+) (+;+) (+;+) (�;+)
(+;�) (+;�) (+;+) (+;+) (+;+) (�;+)
(�;�) (�;�) (�;+) (�;+) (�;+) (+;+)

1
CCCCCCCCA
; (36)

� :

0
BBBBBBBB@

(�;�) (�;�) (�;+) (�;+) (�;+) (+;+)
(�;�) (�;�) (�;+) (�;+) (�;+) (+;+)
(�;+) (�;+) (�;�) (�;�) (�;�) (+;�)
(�;+) (�;+) (�;�) (�;�) (�;�) (+;�)
(�;+) (�;+) (�;�) (�;�) (�;�) (+;�)
(+;+) (+;+) (+;�) (+;�) (+;�) (�;�)

1
CCCCCCCCA
; (37)

where the �rst and second signs represent parities under the two re
ections Z : y ! �y and

Z 0 : y0 !�y0, respectively. Since only (+;+) components have zero modes, we �nd from Eq. (36)

that the 4D gauge symmetry below 1=R is SU(3)C � SU(2)L � U(1)Y � U(1)X . Here we take

U(1)Y as a U(1) generator contained in the upper-left 5 � 5 block of the original 6 � 6 matrix.

This implies that the upper-left 5� 5 block is the conventional Georgi-Glashow SU(5), and the

standard model gauge group is embedded in it. Therefore, if the three MSSM gauge couplings

arise entirely from the 5D bulk gauge coupling, we obtain the standard SU(5) relation for them

at the scale of 1=R: g3 = g2 = (5=3)1=2gY .

Now we consider gauge coupling uni�cation in our theory in more detail. As we have discussed

above, the 5D bulk gauge coupling, L5 = (1=g2)F 2
MN , gives the SU(5) relation for the MSSM

gauge couplings. In general, however, the zero-mode gauge couplings also receive contributions

from the brane-localized gauge kinetic operators, Æ(y)�0F 2
�� and Æ(y � �R)��F 2

��, which do not

necessarily have to respect the SU(5) relation (in our case, the operator at y = �R does not

respect it). Speci�cally, the zero-mode gauge couplings, g0, are given by 1=g20 = �R=g2+�0+�� ,

and thus are not exactly SU(5) symmetric. Nevertheless, if the volume of the extra dimension is

large compared with the cuto� scale of the theory, we expect that the zero-mode couplings are

dominated by the bulk contribution, and the SU(5) relation is recovered [8]. In particular, if we

assume that the theory is strongly coupled at the cuto� scale, M�, we can reliably estimate the

size of various couplings using the naive dimensional analysis: 1=g2 'M�=16�3 and �0 ' �� '
1=16�2, providing a reliable and predictive framework for gauge coupling uni�cation in higher

dimensions [14]. In our case, this leads to the standard SU(5) relation for the gauge couplings,

g3 = g2 = (5=3)1=2gY , at the compacti�cation scale, neglecting corrections from the logarithmic
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running of the gauge couplings betweenM� and 1=R. This determines the compacti�cation scale

to be around the conventional uni�cation scale 1=R � 1016 GeV, at the leading order in the

large logarithm ln(MZR).

How about the Higgs �elds? From the boundary conditions for the � �elds, Eq. (37), we �nd

that the � �eld yields zero modes transforming as (1;2)(1=2;6) 
 (1;2)(�1=2;�6) under SU(3)C �
SU(2)L �U(1)Y � U(1)X (here we have arbitrarily normalized the U(1)X charges). We identify

these �elds as the two Higgs doublets of the MSSM:Hu � �(1;2)(1=2;6) andHd � �(1;2)(�1=2;�6).

Since the theory is 4D N = 1 supersymmetric below 1=R, the Higgs quartic couplings arise from

the D-term gauge potential.

Let us now discuss matter �elds. The basic construction of the theory is quite similar to

the previous SU(3)C � SU(3)W theory. For simplicity, here we discuss the structure of the

SU(6) theory for a single generation model, but the generalization to three generations is quite

straightforward: we just have to introduce three copies of bulk and brane �elds with general

intergenerational mixings for the brane superpotentials.

We begin with the down-type quark. We introduce a hypermultiplet fD;Dcg transforming

as 15 of SU(6). We choose the boundary conditions for this hypermultiplet as

D = D(+;+)
Q �D(+;�)

U �D(+;�)
E �D(�;�)

�D
�D(�;+)

�L
; (38)

Dc = Dc (�;�)
�Q �Dc (�;+)

�U �Dc (�;+)
�E �Dc (+;+)

D �Dc (+;�)
L ; (39)

where the superscripts denote transformation properties under (Z;Z 0), and the subscripts rep-

resent the transformation properties of the component �elds under SU(3)C �SU(2)L�U(1)Y �
U(1)X as Q : (3;2)(1=6;2), U : (3�;1)(�2=3;2), D : (3�;1)(1=3;4), L : (1;2)(�1=2;4), E : (1;1)(1;2),
�Q : (3�;2)(�1=6;�2), �U : (3;1)(2=3;�2), �D : (3;1)(�1=3;�4), �L : (1;2)(1=2;�4), and �E : (1;1)(�1;�2).

We then �nd that zero modes arise only from DQ and Dc
D, which have the correct quan-

tum numbers for the MSSM quark doublet, Q, and the down-type quark singlet, D, under

SU(3)C � SU(2)L � U(1)Y .

For the up-type quark, we introduce a hypermultiplet fU ;U cg transforming as 20 of SU(6).

The boundary conditions are chosen as

U = U (+;+)
Q0 �U (+;�)

U 0 � U (+;�)
E0 � U (�;+)

�Q0 � U (�;�)
�U 0 �U (�;�)

�E0 (40)

U c = U c (�;�)
�Q0 � U c (�;+)

�U 0 � U c (�;+)
�E0 �U c (+;�)

Q0 � U c (+;+)
U 0 � U c (+;+)

E0 ; (41)

where the subscripts represent the transformation properties under SU(3)C �SU(2)L�U(1)Y �
U(1)X as Q0 : (3;2)(1=6;�3), U

0 : (3�;1)(�2=3;�3), E
0 : (1;1)(1;�3), �Q0 : (3�;2)(�1=6;3), �U 0 :

(3;1)(2=3;3), and �E0 : (1;1)(�1;3). We �nd that zero modes arise from UQ0, U c
U 0 and U c

E0, of

which the �rst two have the correct SU(3)C �SU(2)L�U(1)Y quantum numbers for the MSSM

quark doublet, Q, and the up-type quark singlet, U .
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As in the model in the previous section, we introduce bulk masses for the hypermultiplets,

Mu and Md, which we here take Mu < 0 and Md < 0. Then, we �nd that the zero modes for

UQ0 and DQ (U c
U 0, U c

E0 and Dc
D) are localized toward the y = 0 (y = �R) brane. The 5D SU(6)

gauge interaction yields the superpotential Yukawa interaction

S =
Z
d4x

Z
d2� (y0uUQ0U c

U 0Hu + y0dDQDc
DHd + � � �) + h:c:; (42)

where y0u and y0d are given by Eqs. (13, 14). These are still not the quark Yukawa couplings of

the MSSM, since the \quark doublets", UQ0 and DQ, are di�erent �elds while they must be an

identical �eld in the MSSM.

To reproduce the MSSM Yukawa couplings, we have to introduce brane-localized super�elds

and superpotentials at y = 0. Since this brane possesses SU(5) � U(1)X , these �elds and

interactions must respect SU(5)�U(1)X . De�ning TD � DQ�DU�DE and TU � UQ0�UU 0�UE0,

which transform as 102 and 10�3 under SU(5)�U(1)X respectively, the required superpotential

terms are written as

S =
Z
d4x dy Æ(y)

�Z
d2�

n
�T (�T;1TU + �T;2 �XTD) + Y (X �X � �2)

o
+ h:c:

�
: (43)

Here, �T , X, �X , and Y are brane-localized chiral super�elds transforming as 10�3, 15, 1�5, and

10 under SU(5) � U(1)X , respectively; � is a mass scale which we assume to be � 1=R. This

superpotential gives vacuum expectation values for the X and �X �elds, hXi = h �Xi = �,

breaking the U(1)X gauge symmetry. As a consequence, the mixing between TU and TD occurs.

In particular, one linear combination of UQ0 and DQ, QH � cos�Q UQ0 + sin�QDQ, becomes

massive together with the (3�;2)(�1=6;3) component of �T ; here tan �Q = �T;2h �Xi=�T;1. Therefore,
at low energies, we have three quark chiral super�elds, Q � � sin �Q UQ0 + cos �QDQ, U � U c

U 0

and D � Dc
D, which we identify as the MSSM quark super�elds. The low-energy Yukawa

couplings are given by

S =
Z
d4x

Z
d2� (yuQUHu + ydQDHd) + h:c:; (44)

where yu = �y0u sin�Q and yd = y0d cos �Q. The unwanted zero mode from U c
E0 is made heavy by

introducing a brane-localized �eld �C at y = �R, transforming as (4�;1)�3 under the brane gauge

group SU(4)C�SU(2)L�U(1), and the superpotential Æ(y��R)[ �CCU ]�2 , where CU � U c
�U 0�U c

E0.

We thus recover the quark sector of the MSSM below the scale of 1=R � �.

The lepton sector can be worked out similarly. For the charged lepton, we introduce a

hypermultiplet fE; Ecg transforming as 15 of SU(6). The boundary conditions are chosen as

E = E(+;�)Q � E(+;+)U � E(+;+)E � E(�;+)�D � E(�;�)�L ; (45)

Ec = Ec (�;+)�Q
� Ec (�;�)�U

� Ec (�;�)�E
� Ec (+;�)D � Ec (+;+)L : (46)
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The zero modes arise from EU , EE and EcL, of which the last two have the correct quantum

numbers for the MSSM charged lepton, E, and the lepton doublet, L, under SU(3)C�SU(2)L�
U(1)Y . We also introduce a hypermultiplet fN ;N cg transforming as 6 of SU(6), with the

following boundary conditions:

N = N (�;+)
�D0 �N (�;�)

�L0 �N (+;+)
N ; (47)

N c = N c (+;�)
D0 �N c (+;+)

L0 �N c (�;�)
�N ; (48)

where the subscripts represent the transformation properties under SU(3)C �SU(2)L�U(1)Y �
U(1)X as D0 : (3�;1)(1=3;�1), L

0 : (1;2)(�1=2;�1), N : (1;1)(0;�5), �D
0 : (3;1)(�1=3;1), �L

0 : (1;2)(1=2;1),

and �N : (1;1)(0;5). This gives the zero-mode �elds from NN and N c
L0. Introducing bulk hy-

permultiplet masses with Me;Mn > 0, the zero-mode �elds EU , EE and NN (EcL and N c
L0) are

localized toward the y = �R (y = 0) brane. The 5D SU(6) gauge interaction then leads to the

superpotential couplings

S =
Z
d4x

Z
d2� (y0eEcLEEHd + y0nN c

L0NNHu) + h:c:; (49)

where y0e (y
0
n) is given by Eq. (13) with y0u ! y0e and Mu !Me (y0u ! y0n and Mu !Mn).

The brane interactions are given as follows. We �rst introduce a brane �eld �A at y =

�R, transforming as (6;1)2 under the brane gauge group SU(4)C � SU(2)L � U(1), and the

superpotential Æ(y��R)[ �AAE]�2, where AE � EU�E �D. This makes an unwanted zero-mode �eld

from EU heavy together with the (3;1)(2=3;�2) component of �A. We next de�ne FEc � EcD � EcL
and FN c � N c

D0 � N c
L0, which transform as 5

�
4 and 5

�
�1 under SU(5) � U(1)X , respectively.

Introducing a brane-localized �eld �F at y = 0, which transforms as 5�4, we write the brane

superpotential terms

S =
Z
d4x dy Æ(y)

�Z
d2� �F (�F;1FEc + �F;2XFN c) + h:c:

�
: (50)

Then a linear combination of EcL and N c
L0, LH � cos�L EcL+sin �LN c

L0, becomes massive together

with the (1;2)(1=2;�4) component of �F ; here tan�L = �F;2hXi=�F;1. Thus, at low energies, we

have three lepton chiral super�elds, L � � sin�L EcL+cos�LN c
L0, E � EE and N � NN , which we

identify as the MSSM lepton super�elds and the right-handed neutrino super�eld. The Yukawa

couplings for them are given by

S =
Z
d4x

Z
d2� (yeLEHd + ynLNHu) + h:c:; (51)

where ye = �y0e sin�L and yn = y0n cos �L.

In the present scenario, there are two possibilities for obtaining small neutrino masses. In

the case where Mn is sizable, it is diÆcult to implement the conventional high-scale seesaw
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V � � H; �H M M c B X �X Y

U(1)R 0 0 1 1 1 0 0 2

Table 1: U(1)R charges for 4D vector and chiral super�elds; fM;M cg represent bulk matter
hypermultiplets, while B represents brane-localized matter �elds that mix with the bulk matter.

mechanism because the wave-function for the right-handed neutrino is exponentially suppressed

at the y = 0 brane where U(1)X is broken. In this case, however, we can consider an alternative

way of obtaining small neutrino masses. We simply assume that the bulk massMn is somewhat

larger compared with the other bulk masses (Mn � 1=R). The neutrino Yukawa coupling, yn,

is then exponentially suppressed, yn � exp(��RjMnj), and we naturally obtain a small Dirac

neutrino mass. Together with the quark sector, we �nd that the theory below 1=R reduces

to the MSSM with the right-handed neutrino, where small Dirac neutrino masses are obtained

by tiny neutrino Yukawa couplings. The second possibility is that Mn is small compared with

the compacti�cation scale (Mn <� 1=R). This is possible because there is no direct experimental

constraint for the neutrino Yukawa couplings so that their size can be similar to that of the gauge

couplings. Since the wave-function for the right-handed neutrino is nearly 
at in this case, we

can give a large Majorana mass for the right-handed neutrino by introducing the superpotential

term Æ(y)[X2N 2
N ]�2, leading to a small Majorana neutrino mass for the observed left-handed

neutrino through the seesaw mechanism. Therefore, the theory below 1=R is the MSSM with

small neutrino masses arising from the conventional seesaw mechanism. It is also interesting to

point out that the resulting light neutrino masses are not expected to exhibit a strong hierarchy

due to the irrelevance of the bulk mass parameters that could potentially generate it.

Finally, we comment on the R symmetry structure of the theory. As stressed in Refs. [8, 14],

higher dimensional theories naturally possess a special U(1)R symmetry which forbids dangerous

dimension four and �ve proton decay operators. The U(1)R charges are given such that the gauge

and Higgs �elds, V and H, have vanishing charges while the matter �elds, M , have charges of

+1. In our theory, this U(1)R symmetry arises simply as a U(1) subgroup of the SU(2)R

automorphism group of the 5D supersymmetry algebra. The explicit U(1)R charge assignment

is given in Table 1. Requiring the U(1)R symmetry for the entire theory, dangerous dimension

four and �ve proton decay operators are completely forbidden. After 4D N = 1 supersymmetry

is broken, this U(1)R symmetry will be broken, presumably to the Z2 R-parity subgroup. Since

the breaking scale is small, however, it does not reintroduce the problem of proton decay.

17



4 Conclusions and Discussion

We have considered the uni�cation of the Higgs and gauge �elds in higher dimensions: the Higgs

�elds arise from extra dimensional components of higher dimensional gauge �elds. To incorporate

the Higgs doublets in an adjoint representation, the original higher dimensional gauge group must

be larger than the standard model gauge group. This larger gauge symmetry is then broken to

the standard model one at low energies by orbifold compacti�cations. Previous work along this

direction had encountered several diÆculties. In particular, it is generically diÆcult to obtain

both a suÆciently large quartic coupling for the Higgs �elds and a realistic structure for the

Yukawa couplings, due to higher dimensional gauge invariance which acts non-linearly on the

Higgs �elds.

In this paper we have constructed realistic theories in which (a part of) the Higgs �elds are

identi�ed with extra dimensional components of the gauge �eld. There are two ways to obtain

the quartic coupling in the low-energy Higgs potential: from 6D gauge kinetic energies and from

supersymmetric D-term potential. In this paper we have adopted the latter, which allows us

to consider 5D theories. We have constructed both a minimal version (5D SU(3)C � SU(3)W

model) and a uni�ed version (5D SU(6) model) of the theory. While there is no prediction for

the observed gauge couplings and the value of 1=R in the minimal theory, the uni�ed theory

gives the successful MSSM prediction for sin2 �w and 1=R � 1016 GeV, if the volume of the extra

dimension is taken to be large.

The Yukawa couplings are generated from the higher dimensional gauge interaction by in-

troducing matter �elds in the bulk. Working out the boundary conditions carefully, we obtain

all the MSSM Yukawa couplings at low energies. Although they arise from higher dimensional

gauge interactions, the sizes of these Yukawa couplings can be di�erent from the 4D gauge

couplings due to the suppression factors coming from wave-function pro�les of the matter zero

modes determined by bulk mass parameters. Unwanted massless �elds are all made heavy by in-

troducing appropriate matter and superpotentials on branes. This bulk-brane mixing is also the

source of intergenerational mixings in the low-energy Yukawa matrices. Small neutrino masses

are accommodated in the theory either through the conventional seesaw mechanism or through

small Dirac neutrino Yukawa couplings arising from exponential wave-function suppressions.

It is remarkable that we can obtain a completely realistic Yukawa structure with bulk matter

�elds without con
icting with higher dimensional gauge invariance; if we put matter on a brane,

as is often considered in literature, higher dimensional gauge invariance forbids local Yukawa

couplings on a brane.

Below the compacti�cation scale, our theory is reduced almost to the MSSM. We have, how-

ever, not speci�ed how we obtain the supersymmetric mass term (� term) of the Higgs doublets.
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There are a number of ways to generate the � term supersymmetrically; for example, we can

introduce additional bulk �elds � coupled to the Higgs �elds and generate a term connecting

Hu and Hd by integrating out some of the � �elds, inducing the � term by giving the remaining

� �elds vacuum expectation values. However, these are generically quite complicated and not

satisfactory. A more interesting possibility is that the � term arises through supersymmetry

breaking. Here we present two simple cases where the � term is generated naturally. First,

we observe that the 4D K�ahler potential of the theory contains the term [�2]�2 ��2 � [HuHd]�2��2 ,

which consists of the 5D gauge kinetic term. After supersymmetry is broken, this term leads

to a � term of the order of the gravitino mass m3=2, through supergravity e�ects [15]. [This is

due to the fact that the supergravity theory has the symmetry (K;W ) ! (K � f;Wef=M
2

Pl),

where K and W are the K�ahler and superpotentials. Thus, the above term can be transferred

to the superpotential as WeHuHd=M
2

Pl . Considering hW i ' m3=2M
2
Pl to cancel the cosmological

constant, we �nd that the � term, W ' m3=2HuHd, is generated.] Therefore, if the gravitino

mass is of order the weak scale, as in the supergravity mediation scenario, we naturally obtain

the correct size of the � term. Another scenario where the � term arises naturally is one in

which supersymmetry is broken by boundary conditions imposed on the extra dimension [16]

(or by the F -term expectation value for the radion super�eld [17, 18]). In this case the gaugino

masses arise from the twisting of boundary conditions by U(1) � SU(2)R under the orbifold

translation y ! y + 2�R. In our theories, however, the Higgsinos are \gauginos" in higher

dimensions, so that the Higgsino mass (i.e. � term) is also generated by this twisting. We also

�nd that the resulting squark and slepton masses are universal, regardless of the presence of

the bulk hypermultiplet masses and brane-bulk mixings. Therefore, this scenario can lead to

a realistic phenomenology at low energies. In particular, in the case where contributions from

brane-localized kinetic operators are negligible, we obtain the prediction m1=2 � ~m, m2
~q;~l
= ~m2,

m2
hu;hd

= � ~m2, � = � ~m, B = 0 and A = � ~m at the compacti�cation scale 1=R, where m1=2,

m~q;~l, mhu;hd, �B, and A are the universal gaugino mass, the universal squark and slepton mass,

the Higgs soft mass, the holomorphic supersymmetry-breaking mass for the Higgs doublets,

and the trilinear scalar coupling, respectively. Incidentally, the supersymmetric CP problem is

absent in this scenario, since all supersymmetry breaking parameters can be made real at the

compacti�cation scale.

While we have not used the higher dimensional origin of the Higgs to regulate the quadratic

divergence of the Higgs boson (it is still regulated by supersymmetry), we think that under-

standing the origin of the Higgs �elds constitutes a signi�cant advance in terms of the uni�cation

program. In particular, in our SU(6) uni�ed model, all the MSSM gauge �elds and the Higgs

doublets are uni�ed into a single 5D gauge multiplet; both gauge symmetry breaking and extrac-

tion of the Higgs �elds are attained by boundary conditions imposed on a single extra dimension.
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In our framework, the original higher dimensional theory contains only the gauge multiplet and

chiral matter �elds, and the Higgs �elds arise from the gauge multiplet. This sheds light on the

famous question: why we have light vector-like Higgs doublets in the MSSM despite the absence

of a symmetry protecting their mass? Our answer is: because they are gauge �elds. Higher

dimensional gauge invariance forbids a mass term for the Higgs �elds, and once forbidden it is

not generated due to the supersymmetric non-renormalization theorem. The required � term of

the order of the weak scale will be generated through compacti�cation and, possibly, supersym-

metry breaking e�ects. It will be interesting to further explore phenomenological consequences

of the models, especially related to the supersymmetry breaking mechanisms discussed in the

previous paragraph.

Note added:

While preparing this manuscript, we received Ref. [19] which considers the Higgs �eld arising

from extra dimensional components of gauge �elds in a di�erent context.
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